Absci Lead AI Scientist Joshua Meier presents at NVIDIA GTC 2022
Apr 04, 2022
In this presentation Joshua Meier describes two of the companyโs drug discovery machine-learning breakthroughs and presents validation of Absciโs in silico lead optimization models. The validation, requiring wet-lab testing of model predictions, was enabled by Absciโs proprietary and highly engineered synthetic biology platform and assays.
– The first breakthrough is a machine learning model for quantitative prediction of antibody target affinity, allowing computational predictions of binding strength. In one example, Absci demonstrated that this model could accurately predict affinity across four orders of magnitude for previously unseen trastuzumab variants, including accurately predicting variants that had better target affinities than wild-type trastuzumab.
– The second breakthrough is a machine learning model to score โnaturalnessโ of antibody variants; naturalness is a parameter that Absci shows is associated with multiple developability characteristics, and antibodies with better developability have a better likelihood of success as drug candidates through preclinical testing and clinical development.
– Further, Absci showed that generative ML techniques enabled simultaneous in silico optimization for both affinity and naturalness, underscoring the viability of the computational lead optimization pipeline.